Tag: materia

Il vuoto che ho dentro

Mi capito spesso di sentirmi vuoto, un po’ inutile. Mi capita di guardare le mie giornate scorrere senza davvero capirne il senso o con la netta impressione che non stanno lasciando traccia. Mi capita di vivere per riflesso o addirittura di non cogliere la bellezza di questa vita.

Sicuramente è a causa di una mia scarsa profondità morale, ma forse anche a causa di tutto il vuoto che ho dentro. Incolmabile.

Nel senso che io, e fatemelo dire, anche voi siamo fatti per la maggior parte di nulla, di vuoto, di spazio senza materia. Siamo degli ingombranti volumi fatti di pochissima massa e di moltissimo nulla.

Ora, a parte le irrinunciabili divagazioni metafisiche che questa costatazione mi porta a fare, il punto è che siamo fatti di materia. La materia è fatta di molecole e queste di atomi e gli atomi (ahimè) sono fatti sostanzialmente di… vuoto.

Atomo1.png

Allora, senza fare la solita sbrodolata, gli atomi sono i costituenti della materia a loro volta costituiti da particelle subatomiche (protoni, neutroni ed elettroni) che si sono organizzati in un sistema relativamente semplice (scopiazzando dal nostro sistema solare anche se il paragone non mi piace particolarmente a causa della sostanziale differenza delle forze in gioco). C’è un nucleo centrale formato in genere da neutroni e protoni attorno al quale ruotano gli elettroni. Questi sono disposti in una specie di nuvoletta (gli orbitali) nei quali c’è un’altissima probabilità (e qui entra in gioco la statistica nella meccanica quantistica) di trovarli. La maggior parte della massa dell’atomo è nel nucleo (il nucleo è qualcosa come 1800 volte più pesante degli elettroni), mentre gli orbitali… fanno volume.

Quindi, un atomo è una struttura molto piccola, con quasi tutta la massa nel nucleo ed una piccolissima parte statisticamente a distanze moooolto grandi, in proporzione alle dimensioni del nucleo. Ed ecco fatto il nostro vuoto.

Atomo2.png

Immaginiamo un’arancia che abbia dimensioni pari a quelle del pianeta terra Terra. A questo punto gli atomi dell’arancia sarebbero grandi come ciliegie. Miriadi di ciliegie strettamente impacchettate in un globo delle dimensioni della Terra: ecco un’immagine ingrandita degli atomi di un’arancia.
[Il Tao della Fisica, F. Capra]

Buttiamo due numeri: il raggio medio di un atomo è qualcosa come 10^-11 metri, mentre il raggio medio del nucleo è circa 10^-15 metri; il risultato (considerando che nella formula del volue della sfera ci sono i cubi di questi raggi) ci porta a dire che l’atomo è vuoto (distanza media fra nucleo ed elettroni) al 99.999999999999%!!

Così, a spanne: un uomo medio peserà 70 kg, che considerando una densità unitaria (acqua) corrisponde a 0.07 m3, ovvero circa 70 litri. Saremo qualcosa come 7.000.000.000 di esseri umani su questa faccia di Terra e ciascuno ha una massa che sarebbe condensabile nel 0.000000000001 del suo volume. Risultato: circa mezzo litro.

Ed ora fantastichiamo un po’. Diciamo che riusciamo a togliere (e come?) tutto lo spazio vuoto dali atomi, e quindi rimanere solo con il minimo volume necessario a contenere la nostra massa (si, la nostra densità, che è circa quella dell’acqua, aumenterebbe a dismisura); il risultato sarebbe che tutta l’umanità sarebbe contenuta in una pallina da tennis, o in una zolletta di zucchero o comunque sarebbe qualcosa di meno di un litro di volume.

Affascinante.

Siamo quindi fatti sostanzialmente di nulla. Allora la domanda sorge spontanea: come è possibile che quando due corpi si incontrano riescono a non compenetrarsi (il nostro sedere non passa attraverso la sedia) se sono fatti entrambi di vuoto? Ed è nuovamente la meccanica quantistica a spiegarci l’arcano.

Due elettroni non possono trovarsi contemporaneamente nello stesso stato quantistico, quando due elettroni si avvicinano, superato un certo limite iniziano a respingersi (l’esempio di due calamite è qui molto calzante): principio di esclusione di Pauli.
Quindi le molecole che compongono un corpo non possono arbitrariamente essere spinte le une verso le altre, poiché gli elettroni di ogni molecola non possono entrare nello stesso stato degli elettroni di un’altra molecola.

Quando ci sediamo su una sedia in realtà… non la tocchiamo ma lievitiamo a qualche nanometro di distanza su di essa, respinti dalle forze elettriche degli atomi che compongono la sedia: le forze elettriche ci rendono effettivamente solidi.

Affascinante, nuovamente.

WU

PS. Ovviamente la percentuale di vuoto e tutti i fanta-calcoli che ne derivano sono valori medi essendo gli atomi tutti diversi ed essendo noi (ma in fondo tutta la materia) costituiti da una miriade di elementi.

Altrettanto ovviamente sentendo i ragionamenti di certe persone viene il fondato dubbio che la percentuale di vuoto sia molto molto maggiore del mio male di vivere.

PPSS. Chiedo scusa ai puristi della meccanica quantistica, in quanto il concetto di volume e raggio dell’atomo, a livello microscopico appaiono assolutamente fuori luogo, trattandosi di orbitali quantistici in cui gli elettroni hanno una data probabilità di trovarsi: quello che chiamiamo vuoto non è affatto vuoto, solo non c’è materia…

Annunci

Cotone fulminante

Mettiamo insieme cellulosa, acido nitrico ed acido solforico (ovviamente tutte cose abbiamo sotto mano in questo momento), quello che otteniamo è un composto esplosivo ben noto come trinitrocellulosa (nitrocellulosa ad alto contenuto di azoto).

Precursore della dinamite l’esplosivo è in giro del 1845 ed ha dato vita ad una pletora di derivati più o meno stabili e quindi di successo.

E’ un esplosivo in qualche modo controllabile e versatile ed il suo essere noto, fabbricabile, gestibile da lungo tempo negli usi più disparati (flash delle prime macchine fotografiche, propellente delle cartucce nelle armi da fuoco, trucchi di magia, etc.) ha anche consentito il sedimentarsi nella lingua (beh, non proprio quella di tutti i giorni) della contrazione delle due parole; cotone fulminante è quello che chiamiamo in gergo (??) fulmicotone.

Espressione decisamente dal sapore retrò, di non largo uso, di non facile contesto, ma ovviamente (IMHO) bellissima. Qualcosa al fulmicotone è qualcosa di brillante, velocissimo, esplosivo, impetuoso, dotato di grande potenza.

I soci del Gun Club, associazione americana di artiglieri con sede a Baltimora, annunciano di aver inventato un cannone capace di sparare un proiettile in grado di raggiungere la Luna. Il progetto prevede che il proiettile sia di forma sferica, costruito in alluminio, e che il dispositivo di lancio, un’enorme bocca in ghisa scavata nel terreno, utilizzi come detonatore il Fulmicotone (o Nitrocellulosa). Mentre i più illustri scienziati discutono la questione, da tutto il mondo piovono sottoscrizioni per finanziare l’impresa.
[Jules Verne, Dalla terra alla luna, 1865]

Affascinato; giusto il tempo di incantarmi in un’altra giornata al fulmicotone (ma, purtroppo, solo nel senso di oberata da impegni, non di brillante).

WU

Single Atom in an Ion Trap

1atomoStronzio.png

In the center of the picture, a small bright dot is visible – a single positively-charged strontium atom. It is held nearly motionless by electric fields emanating from the metal electrodes surrounding it. […] When illuminated by a laser of the right blue-violet color, the atom absorbs and re-emits light particles sufficiently quickly for an ordinary camera to capture it in a long exposure photograph.

This picture was taken through a window of the ultra-high vacuum chamber that houses the trap. Laser-cooled atomic ions provide a pristine platform for exploring and harnessing the unique properties of quantum physics. They are used to construct extremely accurate clocks or, as in this research, as building blocks for future quantum computers, which could tackle problems that stymie even today’s largest supercomputers.

La materia è fatta di atomi (… e la mano divina ci ha soffiato dentro la vita… 🙂 ). Ma noi vediamo, tocchiamo, odoriamo, fotografiamo la materia, non gli atomi. Di solito.

Un singolo atomo visibile ad occhio nudo è qualcosa che suona un po’ fantascientifico; mi da un po’ l’idea di entrare nelle stanze segrete della creazione con una super 8.

Comunque c’è chi, con una normalissima fotocamera (il che rende il tutto decisamente notevole) è stato in grado di fotografare un singolo atomo, visible ad occhio nudo. Ovviamente la cosa è valsa all’autore, David Nadlinger, la vittoria dell’Engineering and Physical Sciences Research Council science photography competition 2018.

Stiamo parlando di un singolo atomo di stronzio intrappolato in un campo magnetico. 2 mm di spazio che separano due elettrodi che intrappolano un atomo che riflette una luce blu-viola; poi ci mettiamo una bella fotocamera, un obiettivo da macro (Canon 5D Mark II DSLR, Canon EF 50mm f/1.8 lens, extension tubes, and two flash units with color gels), ed uno scatto a lunga esposizione ed il gioco è fatto.

Strontium atoms are relatively large (and extremely stable; are used in atomic clocks…), with radii around 215 billionths of a millimetre. The atom is visible in this photograph because it absorbs and re-emits the bright light of the laser.

Ovviamente cerchiamo di non banalizzare; stiamo parlando di un dottorato in fisica e non di un fotografo occasionale e tutto il setup, che ha poi portato alla foto, è stato allestito per scopi decisamente meno pittorici.

Laser-cooled atomic ions provide a pristine platform for exploring and harnessing the unique properties of quantum physics. They can serve as extremely accurate clocks and sensors or, as explored by the UK Networked Quantum Information Technologies Hub, as building blocks for future quantum computers, which could tackle problems that stymie even today’s largest supercomputers.

WU

Il kilogrammo di Plank

Nulla è più come prima (… e come mi sento vecchio in questi asserti) dalla nonnina che cuce sull’uscio di casa al chilogrammo. Eh ???

Si, neanche il nostro punto di riferimento per vacui discorsi da palestra o da macellaio è destinato a rimanere quello di un tempo, a partire dal 2019 un kilo non sarà più un kilo (cioè si, sarà sempre lui, ma non più fisicamente lui). E, forse, meglio così … no, non per la gioia dei fautori del sistema imperiale britannico.

In origine era un cilindretto di platino-iridio (conservato a Parigi come ci insegnano a scuola) che portava sulle sue spalle la responsabilità di tarare tutte le bilance del mondo. Un ruolo decisamente poco invidiabile per il piccolo oggetto che porta comunque egregiamente avanti da circa 130 anni. Per alleviarne le sofferenze, nel 1889 furono prodotti 18 campioni destinati ad essere identici (e già l’uso di questa parola non può che far storcere il naso) al cilindretto originale per essere distribuiti nei vari paesi affinché vi fossero più riferimenti quando si parla di Kg, gr, hg e simili. Ovviamente la precisione e la misura della massa si riflette direttamente su tutte le grandezze che da essa dipendono (e non sono poche), e.g. densità, candela, ampere, mole, etc.

Periodicamente tali “copie” fanno un viaggio a Parigi per essere confrontate con l’originale (o meglio, anche qui, con copie di lavoro dell’originale). Ovviamente il paragone non è come quando andiamo dal fruttivendolo. I campioni sono conservati sotto teche stagne, vanno lavati con acqua bi-distillata e speciali solventi, non vanno sfregati per non rimuovere materiale ed astuzie del genere. Inoltre una volta ogni 40 anni, il cilindro dei cilindri, il chilogrammo originale, viene rimosso dalla sua teca per fare un’ulteriore paragone con i 18 esemplari e con le sue copie di lavoro.

KgCampione.png

Beh, il punto è che nonostante tutte queste copie ed accortezze, il chilogrammo padre ha perso circa 50 microgrammi rispetto a tutti gli altri. O meglio, la differenza è di 50 microgrammi, ma che sia lui ad aver perso peso o gli altri ad averlo preso non ci è dato saperlo. Il meccanismo che ha causato tale variazione di peso non è affatto chiaro, mentre è chiaro che questo macchinoso sistema è intrinsecamente impreciso. Ah, la precisione richiesta per queste misure? Venti parti su un miliardo…

Il problema è superabile modificando il riferimento del chilogrammo da un campione fisico ad una grandezza fisica universalmente misurabile, come ad esempio la forza elettromagnetica, esprimibile a sua volta in funzione della costante di Plank (finalmente una grandezza universale!). La bilancia di Kimble è praticamente una bilancia a due bracci; su uno dei due viene posizionato un peso , mentre l’altro è lasciato vuoto ed il peso è controbilanciato da una corrente elettrica che scorre in un un filo immerso in un campo magnetico. La misura della corrente (che è poi la precisione nella misurazione della costante di Plank, ovvero di decine di parti su miliardo) è precisa quanto basta per vedere che forza serve per bilanciare il chilogrammo campione. Anche qui, ovviamente, più facile a dirsi che a farsi, dato che la bilancia deve essere isolata da qualunque perturbazione esterna, la precisione nella misurazione della corrente deve essere molto elevata, così come la ripetibilità della stessa.

Praticamente spostiamo il problema da accortezze manuali per il trattamento di un campione fisico ad accortezze tecnologiche nella misurazione di grandezze fisiche.

Un primo passo avanti.

WU

PS. Il peso è comunque l’ultimo superstite di un sistema di misurazione basato su oggetti fisici. Le altre due grandezze fisiche di riferimento, il metro ed il secondo, sono state già sostituite da costanti della natura: il metro è la distanza percorsa dalla luce nel vuoto in un intervallo di tempo pari a 1/299.792.458 di secondo; il secondo è la durata di 9.192.631.770 periodi della radiazione corrispondente alla transizione tra due livelli iperfini dell’atomo di cesio-133.

Il che è l’ennesima prova che della massa (e della gravità ad essa associata), benché ce l’abbiamo davanti da millenni, non abbiamo ancora capito tutto.

Salar de Uyuni

A me da l’idea di un personaggio di un romanzo di Salgari. Invece potrebbe esserne l’ambientazione. Stiamo parlando di più di 10000 km2 (grossomodo come tutto l’Abruzzo) di … sale. La più grande distesa salata del globo. Sale, sale ed ancora sale a più di 3600 m di quota in Bolivia.

L’origine? Abbastanza intuitivamente (ah ah ah) un enorme lago preistorico prosciugatosi che ha lasciato due attuali laghi salati oltre che il gigantesco letto salato. Un posto del genere ha due grandi impatti sul genere umano: pratico e poetico.

Per il primo ho ovviamente in mente il fatto che dalla distesa si estraggono più o meno 25000 tonnellate di sale all’anno (e la stima è che la distesa ne contenga 10 000 000 000!), oltre al fatto che il posto contiene un terzo di tutte le riserve di litio mondiale (oltre che altra robaccia per noi utilissima tipo boro e magnesio).

Per l’aspetto poetico, invece, non possiamo far finta di non vedere la suggestività del posto. Il cielo e la terra si confondono perfettamente divisi soltanto dalla sottile linea dell’orizzonte. L’infinito pare quasi materializzarsi.

Uyuni.png

Meta turistica neanche a dirlo. Circondato da riserve naturali e rari habitat di accoppiamento, banale. Sede di ritrovamento di mummie ed insediamenti di ominidi, quasi ovvio. Geyser e vulcani quiescenti nella zona non potevano mancare.

Un posto decisamente fervido per le pratiche umane. Da millenni, a 360 gradi. Nonostante decisamente ostile per la nostra specie, the place to be.

WU

Argyle Everglow

Diamante da 2.11 carati. Non pochi, non tanti, sicuramente non tantissimi, ma tutto sommato non sufficienti a fare notizia.

… se non fosse per il suo colore. Siamo davanti, infatti ad un rarissimissimo diamante rosso, il più raro dei rari. Circa una ventina rinvenuti in più di trenta anni.

The colour of pink and red diamonds is the result of an atomic deformity which affects the way light is refracted through the stone. Just 0.03 per cent of the diamonds mined every year across the globe are pink, and an even tinier proportion of these are red.

RedDiamond.png

E non è ancora tutto, il primato della rara gemma rossa va al Moussaieff Red. 5.11 carati di puro rossume diamantato rinvenuto in Brasile nel 1990.

The largest known red diamond is the 5.11-carat Moussaieff Red, which was discovered in the 1990s by a Brazilian farmer, cut into a triangular shape and sold to the Moussaieff jewellery house. Another red diamond belonging to Moussaieff, a heart-shaped 2.09-carat stone, sold in 2014 for £3.4 million: over £1.6 million per carat.

Ovviamente a braccetto con la rarità va il prezzo. In questo caso si parla di asta: partenza 10 000 000$.

Ma

The record auction price for a fancy red diamond is $5 million, paid three years ago in Hong Kong, according to materials distributed by Rio Tinto. That transaction also set the record for the per-carat price, $2.4 million.

Ed il prezzo è destinato a salire dato che:

Rio Tinto’s Argyle mine – which produces 90 percent of all naturally colored pink diamonds – is scheduled to close in 2021

WU

PS. Io comunque preferisco decisamente quelli bianchi.

Armalcolite

Partiamo con la genesi del nome: Arm-al-col-ite. A parte il suffisso -ite le altre tre sillabe non sono altro che le iniziali dei nomi: Armstrong, Aldrin e Collins.

Vi dicono nulla? Sono gli astronauti della missione Apollo 11. Si quella “That’s one small step for a man, but a giant leap for mankind“. Quella che consentì ai primi esseri umani di mettere piede sulla luna. Quella che affascinò, motivò ed ispirò un’intera generazione.

L’armalcolite è un minerale che aveva tutte le caratteristiche per essere considerato alieno; fu infatti scoperto per la prima volta nella parte sudoccidentale del Mare della Tranquillità, sulla Luna! Cioè gli astronauti della suddetta missione inciamparono in alcune rocce che riportate a terra ed analizzate non avevano, all’epoca dei fatti, corrispettivo nel nostro mondo. Ma la storia (ahimè) finisce qui, dato che dal 1969 in poi l’armalcolite è stata scoperta in parecchie località della Terra (US, Germania, Messico, Sud Africa, etc. etc.), oltre ad esser stata sintetizzata in laboratorio.

Armalcolite.png

E’ un minerale a base di Ferro, Magnesio e Titanio. E’ una pietra è abbastanza rara sia sul nostro pianeta che sulla nostra luna e si forma a pressioni relativamente basse associate ad un rapido raffreddamento da circa 1000°C fino a temperatura ambiente (tempra). Condizioni abbastanza tipiche della fase di raffreddamento lunare, anche accoppiate a mancanza di ossigeno, “Titanium-rich basalt” ed abbondanza di materiale ferroso.

E’ grignolina, opaca, composta da cristalli allungati. Insomma esteticamente non particolarmente accattivante, ma decisamente suggestiva per la sua origine e per il fatto di darci una prova di un passato condiviso (e non entrerò qui nella varie teorie di formazione lunare) fra noi e la nostra Luna.

WU

PS. Condivide la sua “origine extraterreste” con altri due minerali: tranquillityite and pyroxferroite. Entrambe successivamente trovate sulla Terra.