La propulsione più veloce del suono

Nella classe degli esoreattori vi sono due eminenti soggetti. Stiamo parlando di motori, motori per aerei (diciamo) o che comunque sono in grado di lavorare in aria sfruttando l’ossigeno normalmente presente nell’atmosfera come ossidante per una reazione di combustione.

Prima di presentarvi questi due eminenze ingegneristiche consentitemi una brevissimissima digressione. Il numero di Mach (oltre ad essere un rasoio per uomini) è il rapporto fra la velocità (di volo) e la velocità del suono nelle stesse condizioni atmosferiche (attenzione attenzione: la velocità del suono NON è costante, dipende dalla temperatura e dalle caratteristiche chimiche dell’aria).

E’ quindi chiaro che uno stesso corpo che viaggia alla stessa velocità a due quote diverse (caratteristiche dell’aria e temperatura diverse) ha due numeri di Mach (M) diversi. In particolare in un caso il rapporto potrebbe essere maggiore di uno ed in un caso minore. Ovvero in un caso il corpo viaggerebbe in condizioni supersoniche (M>1) e nell’altro caso subsoniche (M<1). Anzi, a quote molto alte (o a velocità estremamente elevate) M potrebbe essere molto molto alto, condizioni ipersoniche (M>5).

D’accordo. Facciamo ora un ultimo sforzo:

  • un flusso subsonico, in un condotto convergente, aumenta la propria velocità e diminuisce la propria pressione. Il viceversa accade in un condotto divergente;
  • un flusso supersonico, in un condotto convergente, diminuisce la propria velocità e aumenta la propria pressione; Il viceversa in un condotto divergente.

Ciò detto è chiaro che in regime supersonico un condotto divergente seguito da una camera di combustione che riscalda la miscela di ossigeno e carburante seguita da un ugello finale (condotto divergente) è sostanzialmente un modo per accelerare l’aria. E’ praticamente un motore. Ma senza parti rotanti o comunque in movimento (compressori e/o turbine).

Ramjet e Scramjet (le due eminenze di cui sopra) sono proprio questi due oggetti in grado di produrre spinta sfruttando questo principio. La sostanziale differenza tra i due sistemi consiste nel processo di combustione: mente lo Scramjet prevede che non solo il flusso in ingresso ma anche la combustione avvenga in regime supersonico, il Ramjet ha un ingrasso d’aria supersonico rallentato fino ad una combustione subsonica e poi accelerato nuovamente.

RamjetScramjet.png

Il Ramjet prevede una prima zona di compressione (sostanzialmente una presa d’aria) che riduce la velocità del flusso, e quindi aumenta la pressione, fino a raggiungere un Mach di 0.3 – 0.4, valore ottimale per la combustione. Per raggiungere tali valori la presa d’aria sfrutta opportune onde d’urto “normali” che rallentino il flusso. Il tratto successivo è la camera di combustione in cui viene direttamente iniettato combustibile nebulizzato. In questo modo è come se il flusso venisse “energizzato”, fino a raggiungere un regime sonico (M=1) nella sezione di gola posta a valle della camera. Il tratto finale è un canale divergente (l’ugello) in cui si raggiunge di fatto un notevole aumento di velocità (e quindi spinta).

Lo Scramjet, invece, prevede un ciclo molto simile a quello del Ramjet, ma con la fondamentale differenza che la combustione avviene in regime supersonico (cosa assolutamente non semplice soprattutto per problematiche legate al tempo fluidodinamico di reazione). La presa d’aria deve quindi essere in grado di di rallentare solo un po’ il flusso in ingresso alla camera di combustione. Ciò è possibile con delle onde d’urto “oblique”, decisamente meno dissipative di quelli “normali”. Inoltre l’architettura dello Scramjet non prevede particolari “strettoie” e gole tipiche del Ramjet: in questo caso, infatti, la camera di combustione deve essere un condotto già divergente per favorire l’aumento di velocità prima ancora di entrare nell’ugello di espansione.

Ovviamente il diavolo si nasconde nei dettagli: le temperature raggiunte in questi sistemi raggiungo facilmente i 2500 gradi (a causa della così detta temperatura di ristagno), una sfida ingegneristica molto ambiziosa per i materiali oggi disponibili. Le fore aerodinamiche (che variano con il quadrato della velocità) inducono importanti sollecitazioni sul veicolo. Necessità di compensare importanti fenomeni di instabilità legati al non perfetto parallelismo del flusso in ingresso. Tanto per citane alcuni…

Ah, qualora non fosse chiaro, è ovvio che ne Ramjet ne Scramjet sono in grado di garantire il decollo del veicolo per cui vanno affiancati a sistemi più tradizionali.

Insomma, facile non di certo, ma se vogliamo fare il prossimo passo (prima di parlare di sistemi ancora più esotici di propulsione… per questo più affascinanti) dobbiamo darci una mossa (più veloci del suono!) in questa direzione.

WU

PS. Per quanto riguarda il livello di sviluppo: per lo Scramjet per il momento stiamo parlando di (tanti) studi e qualche prototipo in giro per il mondo, ad esempio il programma Hyper-X della NASA (X-43). Mentre il Ramjet è una realtà, almeno per applicazioni balistiche che vengono sganciate direttamente da aerei in volo già in regime supersonico.

PPSS. Divulgativo e qualitativo, come di consueto. Tanto per un’infarinatura, per rinfrescarci la memoria o per motivare ulteriori approfondimenti a riguardo.

Annunci

The Caspian Sea Monster

Is it a bird? Is it a plane? No, it is Superman! … O forse è un Ekranoplano?

In genere gli aerei volano in cielo; gli idrovolanti sono aerei che sono disegnati per decollare ed atterrare sull’acqua grazie a delle gondole che sostituiscono il classico carrello di atterraggio. In genere le navi galleggiano sull’acqua e su essa si muovono; gli aliscafi sono imbarcazioni disegnate per correre veloci sull’acqua grazie alla ridotta resistenza aerodinamica che incontrano emergendo in buona parte dal pelo dell’acqua sfruttando la portanza di una specie di ali immerse in acqua.

L’anello di congiunzione fra queste due specie di oggetti sono gli ekanoplani, più comunemente noti come schemoplani (ah ah ah). Questi sono effettivamente aeromobili che però si muovono a pochi metri dal pelo dell’acqua sfruttando il così detto “effetto suolo”. Una volta raggiunta una sufficiente velocità si forma sotto l’aeromobile una specie di cuscinetto d’aria dinamico. La differenza di pressione tra dorso e ventre dell’ala fa sì che alla sua estremità, l’aria venga spinta dal ventre verso dorso; i vortici che si andrebbero a creare sono disturbati dalla presenza del suolo e la conseguenza è che si ottiene una riduzione della resistenza aerodinamica e quindi un aumento dell’efficienza dell’ala stessa.

In breve: volando vicino il suolo le ali rendono meglio, anzi si possono progettare proprio dei velivoli che sfruttano tale principio. Ovviamente è meglio una bella distesa liscia ed uniforme di acqua piuttosto che un terreno irregolare ed irto di pericoli.

A prima vista questi strani ibridi sembrano dei giganteschi aeroplani con ali corte e tozze e gigantesche code. I vantaggio principale di questi oggetti dovrebbe essere quello di combinare la velocità di un aereo (anzi, anche una efficienza maggiore) con le capacità di carico di una nave. Una sorta di catamarani versione 2.0 che non toccano nemmeno il pelo dell’acqua.

Qualora fosse il caso di dirlo, il più importante (storicamente) e pionieristico sviluppo in questa classe di veicoli fu fatto dall’Unione Sovietica. Il progetto “KM” diede alla luce, nel 1966, il KM-1 (the Caspian Sea Monster).

KM-1.png

Si tratta del più grande schermoplano mai costruito che fu “scoperto” dall’occidente solo grazie a foto satellitari di questo oggetto enorme che scorrazzava nel Mar Caspio… e fu dunque battezzato the Caspian Sea Monster. Misurava circa 100 metri di lunghezza, 46 di larghezza ed aveva dei piani di coda da 22 metri. Pesava qualcosa come 540 tonnellate ed aveva 10 reattori; due in coda per la propulsione ed altri 8 (quattro per lato) lungo la fusoliera per il controllo aerodinamico. Aveva un’autonomia di 3000 km e raggiungeva una ragguardevole velocità di 500 km/h!

Nei progetti originali il KM-1 doveva diventare un velivolo di serie, ma furono costruiti (e non tutti terminati) solo 8 esemplari fra il 1965 ed il 1978 prima che il programma fosse chiuso (anche a causa della caduta dell’Unione Sovietica, c’è da dire). Il risultato fu che il programma KM funse da banco di prova per la sperimentazione delle tecnologie chiave che permisero poi la progettazione del A-90 Orlyonok, che divenne il primo (e sotto molti aspetti l’unico) schermoplano mai costruito per la produzione in serie. Fu l’unico dei grandi ekanoplani a prestare servizio operativo negli anni settanta presso la marina sovietica , ma dei 120 esemplari che sarebbero dovuti esser prodotti se ne realizzarono solo 4 (con tanti disegni di adattarlo da scopi miliari a scopi civili che però non videro mai la luce).

Una storia affascinante di sviluppi tecnologici, sicuramente molto ambiziosi, ma che hanno aperto la via alle macchine che oggi ci vediamo attorno e la mente alle persone che hanno lavorato su tali progetti tanto che si parla ancora oggi di possibili riprese nella progettazione di questi originali e promettenti ibridi.

WU

SSHH – QueSST

Ogni tanto ritornano (ed in effetti era un po’ che non ne parlavamo). L’ossessione dell’uomo per il volo e degli addetti ai lavori per il volo supersonico, commerciale. E già il Concorde è una ferita mai rimarginata.

E la parla d’ordine per unire il concetto di volo in supersonico con quello di rotte commerciali è quiet. Si, il problema dello shock sonico è stato uno dei motivi del fallimento (e della mai reale re-implementazione) delle rotte supersoniche commerciali.

Ora con il programma Quiet Supersonic Transport (QueSST) la NASA spera di poter puntare allo sviluppo di qualcosa che si viaggi più veloce del suono, ma lo possa fare anche nei grandi aeroporti, non abbia rotte proibite, possa insomma essere fruibile dal “grande pubblico”.

Bella sfida, ma forse qualche progresso nel campo dell’aerodinamica lo abbiamo fatto, e di certo con l’ultimo “contrattino” da 246.5 milioni di dollaroni dato dalla NASA alla Lockheed Martin ne faremo altri.

The X-plane’s configuration will be based on a QueSST design that Lockheed Martin developed in 2016 in partnership with NASA, and which completed testing in a wind tunnel at NASA’s Glenn Research Center in 2017 . The proposed aircraft will measure 28.65 meters (94 feet) long, have a wingspan of about 9 meters (29.5 feet), and have a takeoff weight of 14,650 kg

QueSST.png

Il punto è che “the sonic boom” è fragoroso, fa molto rumore ed è potenzialmente pericoloso (per edifici, vetri, strutture, volativi, e via dicendo). La soluzione, fin’ora, è stata principalmente quella di tener lontano tali aereomobili da rotte molto trafficate e specialmente quelle su terra ferma.

Una soluzione diversa, e potenzialmente migliore almeno da un punto di vista di fruibilità commerciale, sarebbe quella di sagomare ali e fusoliera del bolide per far si che quando viaggia a velocità supersonica produca un’onda d’urto molto ridotta, diciamo a mala pena percepibile.

With conventional aircraft designs, shockwaves coalesce as they expand away from the airplane’s nose and tail, resulting in two distinct sonic booms. In contrast, the X-plane’s hull design sends shockwaves away from the aircraft in a way that prevents them from coming together. Instead, much weaker shockwaves are sent to the ground that would be heard as a series of soft thumps.

Il X-plane sarà propulso da un singolo motore elettrico e guidato sa un singolo pilota (d’altra parte con quel naso allungato voglio vedere dove ne mettono due). Velocità massima Mach 1.5 (circa 1660 km/h al suolo) ad una quota di crociera di circa 55000 piedi.

Al momento il piano di sviluppo della compagnia (che bello pianificare, che difficoltà rispettare le pianificazioni…) prevede un programma in tre fasi dal 2019 al 2025. La prima, fino al 2021, dovrebbe chiudersi con la così detta Critical Design Review (una sorta di punto di non ritorno) che da il via alla costruzione dell’oggetto. Dal 2022 via alla fase due della sperimentazione; voli supersonici sopra le basi militari e NASA per vedere se effettivamente lo shock sonico è così quieto come ce lo aspettiamo. Ed in fine, fra 2023 ed il 2025, via alla fase tre con i primi voli del prototipo su linee commerciali. A seguire la produzione di esemplari per la vendita.

Con tanti auguri per un futuro commerciale del supersonico (ma di certo un programma, sia economicamente che come immagine) non di secondo piano per la Lockheed Martin.

WU

PS. A me ricorda un po’ uno Spillone 2.0

Hyperloop Interior Design

Un po’ di interior design per non far mai scemare l’interesse è sempre un’ottima mossa commerciale. Quando non sai che pesci prendere e stai costruendo un treno iperveloce, oppure se vuoi attrarre clienti per il tuo nuovo fabbricato o ancora se vuoi vendere la super moto che per il momento esiste solo nella tua mente, la cosa migliore è fare un bel rendering di come l’oggetto dovrebbe essere (e non sarà mai).

Hyperloop non fa eccezione, ma, dato che parliamo di gente molto intelligente e molto abbiente, oltre il rendering ti fa anche il prototipo. Poiché si sa (ed io sono assolutamente d’accordo), toccare un pezzo di ferro è sempre meglio che vedere un’immagine al computer.

In questo caso, il bussolo super veloce non ha esteriormente una forma che lascia troppo spazio alla fantasia, ed allora perché non fare incetta dei migliori disegnatori d’interni per immaginarci (ed in questo caso prototipale) i sedili ed i corridoi del treno super veloce?

E dove se non nei luoghi in cui il dollaro scorre a fiumi… più o meno come il petrolio? Negli emirati, infatti, R. Benson ha presentato il disegno degli interni del “suo” Virgin hyperloop One.

HyperloopInterior.png

Per me gli interni sono quasi ovvi: linee essenziali, super tecnologici, led cambia-colore ovunque, atmosfera fusion perfetta mentre viaggi a 1200 km/h. Ah, ed ovviamente nessun finestrino! Per la gioia della vostra claustrofobia mi sono un certo numero di LCD ottimi per distrarci (alienarci, in case).

Ad ogni modo, a parte l’operazione di marketing e questo disegno “di dettaglio”, mi pare che la cosa non sia una cattedrale nel nulla. Gli Emirati hanno infatti approvato il progetto per Hyperloop fra Dubai ed Abu Dhabi (… in teoria già dal 2020!) e la cosa fa seguito al nullaosta del governo americano per iniziare i lavori fra New York e Washington per la realizzazione dell’infrastruttura.

Praticamente corre veloce non solo l’idea (che almeno per me ha parecchi punti tecnologicamente ancora oscuri; e.g. il pattino di plasma?), ma anche il lavoro di lobbing per autorizzazioni varie che se non altro sostanziano l’idea.

WU

Propulsion principles

During Eighties the modern aerospace principles were set. Before they were still the same defined by the ancient Chinese, since the black powder discovery. All of these principle rely on a single, consolidated, sacrosanct dynamic law: the reactive force..

Based on these principle we arrived, somehow to atmospheric supersonic propulsion and satellites send here and there in our solar system (and beyond).

Still during Eighties, the Russian engineer Tsiolkowsky (which, by the way was the same to define the propulsion principles actually allowing us to fly still today) defined the 15 steps required for the “cosmonaut development program”:

  • Arranged rocket for flight training on it.
  • Subsequent aircraft wings are reduced, speed increase.
  • Penetrate very close atmosphere.
  • Flights above the atmosphere and low-gravity planning.
  • Create satellites that return to Earth after the flight.
  • Satellites are settled around the Earth, but can come back to Earth.
  • Provide breathing and feeding cosmonauts by plants.
  • Landing modules, satellites for broadcasting and connection.
  • Widely used greenhouses to ensure the independence of man from the Earth.
  • Arranging of extensive settlements around the Earth.
  • Use solar energy, not only for a comfortable life, but also to move through the solar system (Solar sails).
  • Founded the colony in the asteroid belt and other places of the solar system.
  • Develop and expand the number of space colonies.
  • The population of the Solar system is multiplied. Settling around the Milky Way starts.
  • Sun is cooling down. Mankind is removed to other Suns.

As usual below my humble, free and lovely useless comments:

  • Done. The concept of flight training is now a sort of video gaming…
  • Done. Two or more wings planes are not common any more and supersonic planes have relatively reduced wings
  • Done. Almost at any altitude and also with or without planes…
  • Done. Should I mention any manned low Earth orbit mission?
  • Done. Should I mention the space shuttle?
  • Done. Should I mention the MIR, Space Station or the Tiangong?
  • Almost done. We are working on it. Astronauts do not yet eat plants, but they cultivated them in space.
  • Done. Done. Done. Extensively.
  • Not done. Actually from now our achievements did’t reach yet the Tsiolkowsky’s targets. We are still far from reaching any of the following points and even working on them, with our current propulsion principles knowledge, it seems unrealistic to target all of them.

Let’s say that we have rather good chances of setting up space colonies and use solar sails, but I’m rather skeptical that we have any other option (at the moment?) than staying around our Sun. The last two points, in particular, do not seem to me (only?) actually feasible within a human being lifetime (… unless we reach such evolution stages).

I can not avoid, however, to note how accurate the Tsiolkowsky predictions were until today (I’m talking about someone which was able to tell these stuffs in a century when noting man-made wasn’t moving above our heads), thus I should at least assume that he can not be completely wrong regarding what will happen in future.

This is the only reason motivating me to leave a glimmer in believing in propulsion systems other than action-reaction (here I should list a rather long list of potential/Iwanttobelieve/flyingsaucer/bullshit/semi-bullshit ideas and technologies).

WU

Kantrowitz limit

A.R. Kantrowitz era un arzillo vecchietto (non che sia sempre stato vecchio, ma è deceduto alla veneranda età di 95 anni “calcando le scene” fino alla fine) americano. Fisico ed inventore di questo e di quello.

Tanto per intenderci è stato uno dei primi (se non il primo) a proporre il concetto di propulsione laser per mandare carichi in orbita “sparando” fasci laser da terra. Fu uno dei pionieri e più grandi contributori in diversi campi, tipo meccanica dei fluidi, gasdinamica, magnetoidrodinamica, e via dicendo.

Ora, a parte riconoscere la genialità di Mr. Kantrowitz, mi ci sono imbattuto specialmente cercando di capire il concetto di “Limite di Kantrowitz“.

Prendiamo un condotto connesso ad una sorgente di vuoto. Il flusso di aria (mentre viene aspirata dalla pompa a vuoto) in tale condotto (assumendo un flusso di massa pari alla velocità di ingresso) aumenta man mano di velocità fino ad avvicinarsi a condizioni “di bloccaggio” in cui non si può superare la velocità locale del suono. Riducendo ulteriormente la pressione nel tubo la velocità del flusso non può aumentare, non potendo oltrepassare la velocità locale del suono. Questo il famoso limite di Kantrowitz che in sostanza blocca la velocità del flusso indipendentemente dall’ulteriore calo di pressione. Ovviamente un motore a getto (quelli degli aerei che fanno rumore senza eliche) deve accettare tale limite e non può spingere un flusso oltre Mach 1 al suo interno indipendentemente dall’aspirazione che il compressore è in grado di creare.

Tutto ciò è fantastico (e forse anche un po’ complesso). E la soluzione è sempre stata: stare sotto (o sopra nel caso di flussi che nascono già ipersonici) il fatidico limite. Un recente sistema di trasporto che promette faville (e dai che si capisce e comunque ne ho già sproloquiato almeno qui) propone però un’altra soluzione. La quale, nonostante i miei dubbi sull’intero sistema, devo riconoscere è geniale. Mettiamo un compressore sul muso della capsula (la quale viaggia a folle velocità nel tubo quasi-sottovuoto) che prende l’aria compressa dal davanti e la butta dietro per produrre anche spinta. Così rimaniamo sempre ben al disotto del limite di Kantrowitz e beneficiamo anche della compressione che noi stressi creiamo nel tubo muovendoci (ovviamente ci serve un metodo per partire, ma questa è un’altra storia).

In pratica sarebbe come mettersi dentro una grande siringa che aspira dal davanti per spingere il pistone dal dietro. Il tutto ad oltre 1000 km/h.

WU

Supersonic gull dream

Is it clear that I’m obsessed with the problem (the dream) of having supersonic commercial flights?

I have never been on a Concorde and I have my (strange and wrong) ideas that it was a colossal hoax, but nonetheless it is so fascinating to think about supersonic transfers…

We already discussed (here and here, for instance) that one of the main issues of such a concept is the noise (the sonic boom).

The Supersonic Aerospace International (SAI) developed a very nice concept (only a concept…) for a potentially boomless supersonic aircraft (with a sonic boom claimed to be 1/100 that of the Concorde). The design is based on a “curved gull-wing, an inverted V-tail, and a curvilinear fuselage”.

SAI Quiet Supersonic Transport

WOW. But…

The test flight was planned for the 2011 and the first passengers would have been in 2013. Nothing happen and (both for the business jet-sized Quiet Supersonic Transport (QSST) and for the large-scale plan of having commercial 737-sized transport aircraft) SAI seems having some investors lack and probably any further progress is unlikely.

At the present the QSST development plan (declared both for commercial and military use; the second application is what makes me a bit more confident about the project) considers a test flight in 2017 and passengers in 2018 (and 80 million dollar per aircraft expected).

What a pity (?)

WU

PS. Do you know who is the funder of SAI? Michael Paulson, son of Gulfstream Aerospace founder Allen Paulson

Skreemr from London to New York

Matter of half an hour!

I came back once more (after here, for instance) talking about the “new era of commercial flights”. I’m talking (of course) about supersonic intercontinental commercial jets!

The new player is this time the Skreemr. A scramjet launched from a magnetic gun (a pair of conductive parallel rails and accelerated by means of a strong electromagnetic field) starting at Mach 4 speed and reaching up to Mach 10 (5 times faster than the Concorde).

Two rockets, burning liquid-oxygen and kerosene, would help the magnetic gun to boost the scramjet at Mach 4. Liquid oxygen thus needs to be stored on board, but once reached Mach 4 the scramjet engine would fire up, and then the jet could reach up to 10 times the speed of sound by using just the air oxygen to combust hydrogen fuel

As usual for the time being the most notably results of the projects are some concept renderings.

skreemr

It comes by itself that the technological barriers are so huge to make the idea a real near-term challenge: materials able to withstand the heat caused by acceleration, the handling of such accelerations on the passengers, craft noise, the engine itself (actually scramjets are under development for military purposes, but nothing is at the moment real about commercial applciations), and so on.

But the Skreemr is perfectly on the race. Airbus patented a new concept for the Concorde-2 (again the Concorde?!?!) and we already talked about the Musk Hyperloop concept here (and here it seems that the test track construction should start soon).

As in almost any race the winner is the faster. Competition is open (although after decades of studies probably the most promising technologies should have been already identified).

WU

PS @ 11.11.15. Just few more words on the concept of magnetic gun since I recently attended to the presentation of the poster below.

posterrailgun

Ok, we already known that military were working on this, that it is a valid alternative for launching missiles and projectiles and I do not want to deepen here the physics behind; but do you know what really surprised me?

Look at the table: “Launch acceleration: 30kGees”! Do you know what it means? That if you put on a mass of 1 kg, it has to support 30000 kg during the launch (few seconds)!! Well, keep in mind that whatever it has to be launched has to be sturdy enough!

And in the poster the approach is proposed for launching spacecrafts… at least people wouldn’t have to support such an acceleration.

New York – San Francisco: 30 min, 20 $

Let me start with a simple, clear, obvious statement: “I’m not used to read Forbes”. Nonetheless, as usual, Mr. Internet led me here and there and in this case to Forbes (here, dated 02.03.15 [some unnecessary but irresistible pills of numerology: the product of the first two digits gives the sum of other two]).

It is at leat 3 years that on the web I spot the Hyperloop concept. Thanks to the paySpaceXpal-man Elon Musk that (the power of money…) dusted the concept off. In brief the Hyperloop is a concept for a high-speed transportation system based on reduced-pressure tubes where pressurized capsules move thanks to air compressors and linear induced motors (here the wiki explanation). What am I talking about? The strange missile here below.

Hyperloop

The concept dates back to the 1812 when George Medhurst proposed the idea of air-powered capsules in vacuum tubes in his paper “Calculations and Remarks Tending to Prove the Practicality, Effects and Advantages of a Plan for the Rapid Conveyance of Goods and Passengers Upon An Iron Road Through a Tube of 30 Feet in Area, of the Power and Velocity of Air” (not short, but for sure well explaining title). In 2012 Elon launched his (?!) idea of hyper-fast transportation system that himself defined as a “cross between a Concorde, a railgun and an air hockey table”. Sounds a bit science fiction, but probably times are getting mature and mature (200 hundred years of tech-evolution are not enough, but a good step forward).

The idea bounced around for decades (including Mr. Goddard papers in 1910 and Mr. Heinlain in 9156 mentioning “vacutubes” in Double Star) and in 2000s Swissmetro studied the idea concluding that it was not feasible, not economically feasible. Enough easy from a technical point of view (on the paper), enough expansive to let its economical feasibility still object of debate. 6-7.5 billions dollar, the price tag declared by Musk is considered too low, 100 billions seem more realistic (!).

Forbes begins stating that “Hyperloop is real” and it is partially true. A bundle of venture capitalist, billionaire and former White House deputy put together Hyperloop, a company boding of realizing the Hyperloop concept. Actually they intend to develop before the cargo version and only after the human transportation. Besides Hyperloop it exists, with a very similar name, also the HTT (Hyperloop Transportation Technologies), a research company crowdsourced born (and now hiring about 200 eng working in exchange of stock options; that’s business!) with the same aim: develop the Hyperloop concept. Also Musk itself revealed a plan for funding a test track in Texas with scaled-down capsules, and on June the 23rd 2015 I read here that more than 700 people signed for helping Musk for building its Hyperloop prototype. 3 teams working on the concept (I mean, paid for working on this!).

For me, and the children like me, it is fascinating thinking how Hypoerloop may change the world (boats? old dinosaur. goods transportation? matter for almost-real-time delivery!). Hyperloop can go over and under lands, through the oceans and so on (for the first line proposed by Musk the tubes should go parallel to Interstate 5) and actually overcomes two of the major impediments to rapid travel: air drag and friction. I personally belive (and who cares…) that our concept of transportation system should be deeply revisited (not jut increase the car efficiency of build larger/faster planes) and actually Hyperloop sounds to me a good compromise between science fiction and future reality.

In 2015, New York – San Francisco: 360 min (direct flight), 400 € (as a minimum). Keep on dreaming (and Musk investing).

WU

PS. Let me just point out the image below, taken from the Musk white paper, which compares the MJ (energy) for passenger along the journey Los Angeles – San Francisco.

LASF_MJ

Obviously (!) the Hyperloop technology is the absolute minimum (and the same would be also comparing times), but:

  • strange that the second best choice is still another Musk creation, the Tesla Model S fully electric car…
  • among “old technologies” cars, with 2 passengers, remain the less energetic options (although we see a lot of one-man-cars). Too energy-consuming airplanes, sounds like useless tech development…
  • Hyperloop has 20 $ estimated for something around 50 MJ, i.e. 0.4 $/MJ. The same cost of a flight connection (about 400$ for 1000 MJ)…