Categoria: stars

24mo minimo solare

Il sole (come un po’ tutte le cose in natura) ha bisogno del suo riposo. La nostra stella compie un ciclo completo della sua attività in circa 11 anni. Attività segnata da turbolenze, espulsioni di massa dalla corona, brillamenti e macchie solari.

Ora siamo vicini, anzi vicinissimi, al minimo dell’attività del nostro sole. Siamo nei pressi di una sorta di “letargo” della nostra stella. E’ più di un mese, infatti, che sulla superficie del sole non vi è traccia di alcuna macchia solare.

In generale l’attività della superficie solare sembra sempre più rara e tutto sembra “senza incidenti” da troppi giorni. Il prossimo minimo solare (il termine del 24mo ciclo, per la precisione) è previsto per il 2021, ma se le cose continuano così sembra proprio che abbiamo un paio di anni di anticipo nella fase di riposo della stella. Praticamente il sole sta andando verso il suo riposo più velocemente di quanto ci aspettassimo.

Ovviamente il momento di “entrata” in questa fase di minimo non è un istante facilmente identificale ne tanto meno è facilmente prevedibile la durata di tale minimo. Il precedente (storicamente fra i più lunghi, ovviamente senza arrivare a scomodare il minimo di Mauder) è stato caratterizzato da ben 800 giorni consecutivi senza macchie solari.

Durante le fase di minimo il sole in qualche modo riorganizza il suo campo magnetico; un po’ come mettere ordine fra le proprie cose. In tale fase, inoltre, la corona solare presenta una serie di estesi “buchi coronali”. Ovvero una serie di regioni a bassa emissione di raggi X che però convogliano comunque il vento solare. Se una di queste raffiche fosse diretta verso la terra non ci proveremmo di osservare questa o quella aurore boreale, tempeste geomagnetiche e modifiche alla ionosfera (… la cosa a cui dobbiamo il propagarsi delle onde radio).

Il minimo solare ha anche un altro contro per il nostro pianeta. In questa fase, infatti, il vento solare è meno denso e scherma in maniera meno efficiente i raggi cosmici (particelle molto energetiche e quindi “cattive” per tutta l’elettronica che buttiamo nello spazio). In breve, il nostro scudo spaziale è un po’ meno efficiente e tutti i satelliti (inclusi quelli di telecomunicazione) sono un po’ più a rischio.

Magari fra qualche secolo vedremo qualche quadro con nevicate fuori stagione, fioriture o vendemmie tardive o fiumi inaspettatamente congelati, ma ad ogni modo non è un evento da allarmismo (neanche per i cospiratori più incalliti si può gridare alla prossima era glaciale); solo qualche anno di riposo per il nostro Sole come successo milioni di volte in passato e (forse) succederà in futuro.

WU

Annunci

Luce zodiacale

… un nome che potrebbe essere il titolo di un best seller. In astronomia, invece, identifica un bagliore; un flebile bagliore. Quasi spettrale, ma di certo da non confondersi con la scia luminosa della nostra Via Lattea.

LuceZodiacale.png

In primavera (soprattutto), quando la luna non illumina le nostre notti (soprattutto), quando le luci del tramonto sono definitivamente scomparse e quelle dell’alba non hanno ancora preso il suo posto (soprattutto)… il cielo non è comunque buio e nero come ci aspetteremmo.

La luce del sole, anche se illumina l’altra metà del nostro globo, viene comunque riflessa dalle particelle di polvere presenti sui piani orbitali dei pianeti del sistema solare. Addirittura, in notti molto buie, la luce zodiacale descrive un cerchi completo attorno all’eclittica.

La quantità di polvere che c’è lassù e ovviamente molto bassa, ma quelle necessaria a realizzare tale bagliore lo è sorprendentemente molto di più. Particelle da 1 millimetro distanti 8000 metri con un bassissimo potere riflettente, se moltiplicate per la vastità del cosmo sono sufficienti a realizzare “l’aurea zodiacale”.

Inoltre nella flebile luce zodiacale c’è un punto, esattamente opposto alla posizione del sole che è debolmente più luminoso del resto; il Gegenschein… una specie di anti-sole delle notti più buie.

WU

PS. Se avete una seppur blanda curiosità sul nome: la luce zodiacale si chiama così poiché riempie la regione zodiacale che è quella fascia della volta celeste, di circa 9° sopra e sotto l’eclittica, entro la quale giace il percorso apparente del sole, della luna e dei pianeti. In soldoni la regione entro la quale abbiamo immaginato tutti i nostri segni zodiacali raggruppando le stelle in immaginifiche costellazioni.

Life Versus Dark Energy

Già un titolo così mi fa venir voglia di leggere l’articolo. Poi quando continua con “How An Advanced Civilization Could Resist the Accelerating Expansion of the Universe“… praticamente ha già vinto.

Nei meandri di una noiosa telefonata fiume-pseudo-lavorativa mi sono imbattuto in questo succulento articolo. Ora ne blatero un pochino, ma come sempre, a parte i “risultati” che pretende di aver “dimostrato” la cosa che mi affascina di più è che qualcuno si sia messo a pensare ad una eventualità del genere ed è riuscito a trarne qualche conseguenza. Questo si che giustifica millenni di evoluzione umana… 🙂

The presence of dark energy in our universe is causing space to expand at an accelerating rate. As a result, over the next approximately 100 billion years, all stars residing beyond the Local Group will fall beyond the cosmic horizon and become not only unobservable, but entirely inaccessible, thus limiting how much energy could one day be extracted from them. Here, we consider the likely response of a highly advanced civilization to this situation. In particular, we argue that in order to maximize its access to useable energy, a sufficiently advanced civilization would chose to expand rapidly outward, build Dyson Spheres or similar structures around encountered stars, and use the energy that is harnessed to accelerate those stars away from the approaching horizon and toward the center of the civilization.

Praticamente: la materia oscura (ammesso che esista) sta causando una accelerazione dell’espansione dell’universo. Ciò porta le stelle ad allontanarsi fra loro e quindi una potenziale civiltà super avanzata a ritrovarsi brevemente in mancanza di energia. Una “likely response” a questo problema che tale civiltà potrebbe trovare è quella di costruire sfere di Dyson (ve le ricordate?) ed accalappiare quante più stelle, con relativa energia, per portarle verso la culla della loro (certamente non nostra) civiltà.

Ovviamente facile a dirsi, ma non a farsi… per noi.

[…] we speculate about how an advanced civilization would respond to the challenge of living in a universe that is dominated by dark energy. Here we have in mind a civilization that has reached Type III status on the Kardashev scale, which entails the ability to harness the energy produced by stars throughout an entire galaxy […]. To this end, they could build Dyson Spheres or other such structures around the stars that are encountered, and use the energy that is collected to propel those stars toward the center of the civilization, where they will become gravitationally bound and thus protected from the future expansion of space.

Parliamo quindi di gente abbastanza avanti (di certo vi ricordate questa scala) tanto da poter costruire palle-cattura-energia come se niente fosse ed utilizzare, intelligentemente questa energia per avvicinare le stelle al centro della loro civiltà “combattendo” in qualche modo l’espansione dell’universo. Chissà se tale civiltà possa essere considerata come una causa di una vita più lunga del nostro universo?!

Il paper continua “desumendo” anche quali sono le stesse che potenzialmente è più facile cadano vittime di questa avanzatissima civiltà di cannibali. In particolare fra 0.2 e 1 volta la massa del nostro sole (i.e., se ancora in vita noi saremmo spacciati).

… e dato che l’appetito vien mangiando… perchè fermarsi?

[…] we performed our calculations for the case of an advanced civilization that expands outward from the Milky Way (or Local Group) starting in the current epoch. It is of course possible, however, that life has already evolved elsewhere in our universe, and that civilizations far more advanced than our own may already exist within our Hubble volume. If this is the case, then they may have already begun to collect stars from their surrounding cosmological environment, altering the distribution of stars and leading to potentially observable signatures.

Ovvero, guardiamo bene cosa c’è li fuori poiché qualcosa del genere potrebbe addirittura essere già in atto! Accorgercene per tempo potrebbe, oltre che farci esultare per aver trovato i nostri agognati alieni, essere anche la carta della nostra salvezza (guida galattica per autostoppisti non ci ha insegnato nulla?).

Ora, a parte i calcoli, le ipotesi, i dettagli e tutto il bello “per gli addetti ai lavori” (quali?), ribadisco che è l’idea il punto di forza del paper. Idea che deve esser stata approfondita sostanzialmente perché divertente o bizzarra, ma che ha l’indubbia dote di riuscire a motivare i lettori più curiosi… meglio se giovani e di talento. A questo, e non a farsi auto-pubblicità, dovrebbero servire le ricerche e le pubblicazioni scientifiche.

WU

PS. Consiglio di leggerlo.

HD 101065 – lemme lemme

Intanto stiamo parlando di stelle. Di “stelle peculiari“, e qualche peculiarità devono pur avercela…

Correva l’anno 1818, tutta una serie di eventi sconvolgeva il nostro mondo e molta acqua è passata sotto i nostri ponti da allora, ma in questi due secoli la stella HD 101065 ha compiuto una (!!) singola rotazione attorno al suo asse.

Certo che così le cose devono assumere tutte un’altra prospettiva… anche per una stella.
Paragoni, in ambito cosmico, si fanno difficilmente… abbiamo stelle che ruotano nel giro di qualche secondo, il nostro sole che ci impiega circa 25 giorni e stelle peculiari che arrivano a due secoli. C’è ne è per tutti i gusti, insomma.

Ad ogni modo il motivo “reale” (ok ok, diciamo quello fisico) per cui questo genere di stelle ruota così piano non ci è chiarissimo.

HD 101065, la stella di Przybylski (dal cognome impronunciabile del suo scopritore) è uno di queste stelle peculiari (no, non è l’unica…). A circa 370 anni luce da noi, nella costellazione del centauro guarda le nostre vicende con una calma che si addice ad un vecchio saggio.

La lentissima stella fu scoperta nel 1961 e fin da subito le analisi spettrali rivelarono qualcosa di strano. Al suo interno vi sono pochissime tracce di ferro e nichel (elementi tipicamente abbastanza abbondanti nelle stelle), ma elevate quantità di stronzio, olmio, niobio, scandio, ittrio, cesio e altri elementi alquanto esotici.

La strana composizione chimica, tuttavia, ha solo portato gli astronomi a meglio osservare l’astro fino a scoprirne la peculiare velocità di rotazione che però è mal giustificata dall’abbondanza di questi elementi chimici.

Mettendo insieme l’osservazione del campo magnetico della stella dalla sua scoperta (dati, diciamocelo, non troppo precisi), con quelli più recenti raccolti con i telescopi dell’ESO è stato possibile stimare una rotazione stellare dell’ordine dei 190-200 anni. Il campo magnetico è anche risultato particolarmente intenso; motivo per cui una delle ipotesi più accreditate per la flemmatica velocità di rotazione di queste stelle è proprio quella che esse sono rallentate dal loro stesso, intensissimo campo magnetico (dell’ordine delle decine dei kilo-Gauss).

Ovviamente a mistero aggiungiamo mistero, dato che il classico effetto dinamo che prevede la formazione di un campo magnetico per effetto del moto (che non deve essere lentissimo) dei materiali ferrosi all’interno della stella in questo caso non ci da risposte soddisfacenti.

Facciamocene una ragione: lassù ci sono ancora molte cose che le nostre evolutissime teorie non riescono a giustificare; madre natura non si è certo risparmiata con la fantasia.

WU

PS. non centra una cippa ma mi ha ricordato quest’altro mio delirio…

Un anno lungo un giorno

Che fa un po’ la rima “un sogno lungo un anno”, che si declinerebbe, quindi, in “un sogno lungo un giorno” che in fondo non suona così magico. Ok, la smetto.

Non siamo soli nell’universo. Per me questo è un concetto abbastanza assodato; il che non vuol dire che saremo presto invasi da omini testeverdi, bensì che è questione di tempo affinché troviamo vita su qualche altro pianeta.

Fra i vari candidati sicuramente NON c’è il sosia del “nostro” Mercurio. Mercurio è il più interno dei pianeti del sistema solare, il che lo colloca sufficientemente vicino alla nostra stella da farne una palla di roccia senza traccia di atmosfera con un lato incandescente ed uno giustamente gelido.

Il suo sosia, ovviamente altrettanto inospitale, è stato identificato a ben 340 anni luce da noi nella costellazione della Vergine. K2-229b ha un raggio pari a 1,16 volte quello della nostra Terra ed una massa 2,6 volte maggiore; essendo così vicino alla sua stella un anno dura meno di uno dei nostri giorni e la temperatura superficiale media è superiore a 2.000 gradi (il che lo rende anche uno dei pianeti più caldi mai scoperti). Per confronto un anno su Mercurio dura ben 115 giorni e la temperatura superficiale media raggiunge “solo” i 167 gradi; praticamente un paradiso a confronto di K2-229b. Tanto per continuare a fantasticare, su questo pianetino avremmo una gravità del 91% maggiore che sulla Terra!

K2-229b.png

Ma non è tutto, il pianeta è anche un rarissimo caso in cui la composizione chimica delle rocce del simil-mercurio (che è sostanzialmente un gigantesco cuore di ferro) sono sostanzialmente diverse da quelle della stella attorno al quel orbita, aprendo cos’ la strada ad innumerevoli (ed affascinanti) ipotesi.

La vicinanza con la stella madre lo ha epurato di tutta l’atmosfera e lasciato solo, e per giunta alterandoli, i componenti ferro-rocciosi più resistenti? Il pianeta è il risultato di un impatto fra due planetoidi (tipo l’origine della nostra luna) e ciò che resta è un miscuglio dei due mentre i vari corpuscoli sono stati prontamente fagocitati dalla stella madre? Praticamente si parla di un mondo di dimensioni e massa simili alla Terra, nella posizione circa del nostro Mercurio e con un misterioso passato tutto da scoprire.

K2-229b_1.png

La scoperta porta (abbastanza ovviamente a dir la verità) la firma congiunta del telescopio ESO e del satellite Kepler; che stanno facendo praticamente incetta di questo genere di scoperte (almeno finché rimane operativo). La missione sarà seguita dal satellite Plato che aggiungerà anche la possibilità di studiare in dettaglio l’atmosfera di questi pianeti aumentando le chances di identificare posti per noi vivibili (e farci sognare ed industriarci come conseguenza della loro inenarrabile distanza).

WU

PS. E, dulcis in fundo, il pianeta è il più interno di tre fratelli e tutti hanno orbite più interne del nostro Mercurio. Ha tutta l’aria di essere un caldissimo sistema pieno di sorprese.

78 megahertz

Romanziamo un po’ anche questo.

Deserto australiano, una piccola antenna radio nel bel mezzo di un nulla di polvere, vento e silenzio. Un solo omino, stanco ed annoiato davanti al suo monitor. Vent’anni di speranze, ricerche e tentativi; condivisi dal nostro solitario ricercatore e da decine di sognatori e testardi come lui.

Ad un tratto un flebile bip; un puntino insignificante per molti, tanti, tantissimi, tutti meno che lui. Il bip che aspettava, il vagito della prima stella. Buon compleanno.

180 milioni di anni dopo il Big Bang, praticamente un’occhiolino dopo la nascita dell’universo, l’ “Età Oscura” (il buio cosmico, perenne ed onnipresente) era squarciato dalla prima luce. Raggi ultravioletti che squarciavano la nebbiolina di idrogeno che rappresentava il risultato stesso del Big Bang, che era “il tutto”.

The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.

La piccola antenna si era spinta indietro nel tempo dove nessuno era mai giunto, dove i suoi fratelloni più grandi, sia in cielo che in terra, non erano ancora arrivati. Un segnale flebile e disturbato in mezzo ad una moltitudine di rumore e ruggiti di stelle più grandi e più giovani. Ma l’interesse era per quel vecchio, lontano e flebile dinosauro che rappresentava una pietra miliare nell’evoluzione del cosmo.

78Mhertz_1.png

Ma non è tutto; il bip non suonava come il nostro amico testardo si aspettava. Non era un segnale propriamente regolare… e meno male, dato che altrimenti la ricerca sarebbe finita li. Era in qualche modo un segnale deformato, dalle caratteristiche inattese: due volte più ampio del previsto (An absorption profile centred at 78 megahertz in the sky-averaged spectrum).

After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz.

[…]

The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected.

78Mhertz.png

E qui, dal solitario omino si passa ad una pletora di pensatori imbellettati, di scienziati da carta e penna, di lavagne polverose e studi bui: l’idrogeno gassoso era forse più freddo di quanto ipotizzato; probabilmente a causa dalla materia oscura. In piena serendipità, da cosa nasce cosa e siamo vicini a poter definire qualche proprietà di una particella di materia oscura e (speriamo di no) rimetter mano al modello standard per tener buono questo strano, flebile vagito e la conoscenza del mondo che ci circonda così come siamo abituati a vederlo e spiegarcelo.

Praticamente nello spetto delle microonde della radiazione cosmica di fondo, questa lieve diminuzione del segnale attorno ai 78 MHz è una distorsione compatibile con, tenendo conto dell’assorbimento dell’idrogeno e dello spostamento verso il rosso dovuto all’espansione dell’universo, un idrogeno (ed in fondo un intero universo) due volte più freddo di quanto ci aspettassimo.

Parliamo di circa 3 gradi Kelvin; -270°C.

Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude.

WU

Evento di Carrington

Era il primo del mese di Settembre. Era il 1859. Era giovedì. Una bella mattina, cielo terso, nessuna nube. Una dell’aria frizzante attorno alle 11.00 del mattino attorno all’osservatorio di Red Hill, nel Surrey.

L’immagine del Sole era proiettato su un monitor all’interno di un fresco ufficio. Richard C. stava guardando il monitor sorseggiando il suo caffè senza troppo entusiasmo, senza troppa concentrazione, senza troppa speranza di serendipità.

Come nei migliori film, ad un certo punto, senza preavviso, Richard vide un paio di luci particolarmente accecanti apparire all’interno di una formazione di macchie solari. Richard, avrebbe si voluto guardare un qualche programma televisivo, ma si accontentava di studiare formazioni di macchie solari.

Le formazioni luminose continuavano ad aumentare di luminosità. Richard non era uno sprovveduto, Richard sapeva che non si trattava di astronavi aliene, ma quando le vide addirittura più luminose della nostra stessa stella capì che era testimone di qualcosa di veramente straordinario.

Un testimone, ecco cosa mancava. Non poteva registrare il suo monitor, non poteva fare una foto con un qualche smartphone. Doveva trovare qualcuno, ma la cosa richiedeva che si allontanasse dal suo monitor e dalle luci che su esso brillavano.

Prese il coraggio a quattro mani; iniziò a correre per trovare qualcuno. Il primo andava bene, bastava che avesse altri due occhi che confermassero quanto lui stava vedendo.

Quando tornarono, affannati, le luci si erano notevolmente affievolite. Ovviamente. Erano ancora li, ma non erano più che normali macchie solari. Il giorno successivo sui cieli di Cuba, Giamaica, Hawaii e via dicendo uno splendido spettacolo di aurore boreali era la migliore testimonianza della più grande tempesta geomagnetica (brillamento solare) mai registrata (fin’ora…).

WU