Categoria: physisc

Single Atom in an Ion Trap

1atomoStronzio.png

In the center of the picture, a small bright dot is visible – a single positively-charged strontium atom. It is held nearly motionless by electric fields emanating from the metal electrodes surrounding it. […] When illuminated by a laser of the right blue-violet color, the atom absorbs and re-emits light particles sufficiently quickly for an ordinary camera to capture it in a long exposure photograph.

This picture was taken through a window of the ultra-high vacuum chamber that houses the trap. Laser-cooled atomic ions provide a pristine platform for exploring and harnessing the unique properties of quantum physics. They are used to construct extremely accurate clocks or, as in this research, as building blocks for future quantum computers, which could tackle problems that stymie even today’s largest supercomputers.

La materia è fatta di atomi (… e la mano divina ci ha soffiato dentro la vita… 🙂 ). Ma noi vediamo, tocchiamo, odoriamo, fotografiamo la materia, non gli atomi. Di solito.

Un singolo atomo visibile ad occhio nudo è qualcosa che suona un po’ fantascientifico; mi da un po’ l’idea di entrare nelle stanze segrete della creazione con una super 8.

Comunque c’è chi, con una normalissima fotocamera (il che rende il tutto decisamente notevole) è stato in grado di fotografare un singolo atomo, visible ad occhio nudo. Ovviamente la cosa è valsa all’autore, David Nadlinger, la vittoria dell’Engineering and Physical Sciences Research Council science photography competition 2018.

Stiamo parlando di un singolo atomo di stronzio intrappolato in un campo magnetico. 2 mm di spazio che separano due elettrodi che intrappolano un atomo che riflette una luce blu-viola; poi ci mettiamo una bella fotocamera, un obiettivo da macro (Canon 5D Mark II DSLR, Canon EF 50mm f/1.8 lens, extension tubes, and two flash units with color gels), ed uno scatto a lunga esposizione ed il gioco è fatto.

Strontium atoms are relatively large (and extremely stable; are used in atomic clocks…), with radii around 215 billionths of a millimetre. The atom is visible in this photograph because it absorbs and re-emits the bright light of the laser.

Ovviamente cerchiamo di non banalizzare; stiamo parlando di un dottorato in fisica e non di un fotografo occasionale e tutto il setup, che ha poi portato alla foto, è stato allestito per scopi decisamente meno pittorici.

Laser-cooled atomic ions provide a pristine platform for exploring and harnessing the unique properties of quantum physics. They can serve as extremely accurate clocks and sensors or, as explored by the UK Networked Quantum Information Technologies Hub, as building blocks for future quantum computers, which could tackle problems that stymie even today’s largest supercomputers.

WU

Annunci

Moon’s fossil bulge

Come trattare brevemente (e sommariamente come mi si confà) un tema che merita lunghi trattati, che sono poi solo il frutto (giustamente dettagliato) di lunghi studi e tentativi.

Ad ogni modo, quando abbiamo la forza (ed i coraggio) di staccare il mento dal petto, il fatto che abbiamo un bel satellitone naturale che ci protegge non passa certamente inosservato.

Ma la luna, e questa non è certo una novità, nasconde ancora tanti segreti. Molti (praticamente tutti) oggetti nel nostro sistema solare hanno una specie di rigonfiamento all’equatore. Ovvero lungo le loro sezioni centrali si tende ad accumulare più massa a causa della rotazione (se lo fate con una trottola ve ne convincete velocemente) attorno al proprio asse.

La luna, anche in questo, è però speciale. Ha si il suo bel rigonfiamento equatoriale, che dovrebbe essere dell’ordine dei 200 metri, ma molto più pronunciato di quanto ci saremmo aspettati. Il rigonfiamento, infatti, è circa 20 volte maggiore! I molteplici crateri da impatto ed i vari bacini lunari hanno comunque “smussato” questo rigonfiamento, che rimane comunque sostanzialmente maggiore di quanto ci saremmo aspettati considerando la sua velocità di rotazione: un giro completo in circa 28 giorni.

Ovviamente la cosa è sufficiente per stuzzicare la mente umana e dedicarsi quindi a chiedersi il perché di tale anomalia (se non altro per dimostrare che i calcoli su tutti gli altri satelliti naturali li sappiamo fare e che la “teoria” è salva…). Bene, da simulazioni numeriche, riportati qui in Geophysical Research Letters, pare che gli strati esterni della luna si debbano esser congelati nella loro attuale configurazione circa 4 miliardi di anni fa (no, noi non eravamo ancora a spasso per il globo) per cristallizzare il notevole rigonfiamento equatoriale. E prima di quell’epoca, evidentemente, la luna ruotava su se stessa ad una velocità molto maggiore di oggi, il che quindi generava un rigonfiamento equatoriale notevolmente maggiore.

Questo scenario ha inevitabilmente un impatto anche su tutta l’evoluzione del sistema Terra-Luna. Oggi, infatti la luna ruota attorno a se stessa alla stessa velocità con cui ruota attorno alla Terra.

The Moon currently recedes from the Earth at a rate of about 4 centimeters per year according to lunar laser ranging observations from the Apollo missions. The recession is believed to result from gravitational or tidal interaction between the Earth and Moon. The same process also causes Earth’s rotation to slow down and the length of day to increase.

Ma per soddisfare tale scenario in passato la luna deve aver orbitato attorno a noi ad una velocità molto più alta ed anche la velocità con cui la Terra ruotava attorno al proprio asse (che in ultima analisi contribuisce al momento angolare di tutto il sistema Terra-Luna) deve esser diminuita più lentamente del previsto. Ciò ha infatti determinato una più lenta diminuzione della velocità di rotazione della luna attorno a se stessa che ha dato il tempo al rigonfiamento equatoriale di fissarsi al suo stato dell’epoca.

The timing and necessary conditions of this fossil bulge formation have remained largely unknown given that no physical models have ever been formulated for this process. Using a first-of-its-kind dynamic model, Zhong and his colleagues determined that the process was not sudden but rather quite slow, lasting several hundred million years as the Moon moved away from the Earth during the Hadean era, or about 4 billion years ago. But for that to have been the case, Earth’s energy dissipation in response to tidal forces-which is largely controlled by the oceans for the present-day Earth-would have to have been greatly reduced at the time.

E non è tutto; la cosa ci porta “facilmente” ad un’altra considerazione. Il fatto che la velocità di rotazione della Terra non stesse rallentando così rapidamente suggerisce che il nostro pianeta fosse praticamente un corpo semi-solido (altrimenti il movimento di masse liquide avrebbe introdotto una forza d’attrito frenante). Ovvero non vi era traccia di alcun oceano che rallentasse la velocità di rotazione del nostro pianeta, almeno per primi 500 milioni di anni… O, in alternativa, gli oceani esistevano ad uno stato ghiacciato, almeno in gran parte (probabilmente a causa del minore livello di emissione di calore/radiazioni da parte del nostro Sole).

Earth’s hydrosphere, if it even existed at the Hadean time, may have been frozen all the way down, which would have all but eliminated tidal dissipation or friction

Tema che merita maggiori approfondimenti, o almeno maggiori riflessioni, magari durante una notte di luna piena.

WU

Parole in fumo

Tanto per divagare su qualche altra cazzata.

Avete mai notato che candele/fiammiferi fanno fumo più che altro quando li spegnete? Non che se li spengo io non facciano o non facessero fumo, ma ieri sera mi sono flashato su questo “fenomeno misterioso” (ci scommetto che vi sarebbe la coda di programmi pseudo-scientifici pronti a risolvere l’arcano).

fumo.png

La mia spiegazione è abbastanza semplice e forse corretta. Il fenomeno in questione è ovviamente la combustione, ovvero una reazione in cui ossigeno (dell’aria) ed il carbonio (della cera o del legno) si combinano formando una serie di schifezze fra cui acqua ed anidride carbonica. Come è ben noto la combustione porta il sistema ad una temperatura decisamente alta (ma dai!) per cui i prodotti della combustione sono particelle ad elevata temperatura che, come tutte le cose incandescenti, emettono luce: vediamo la fiamma (ma dai!).

Quando andiamo a spegnere la fiammella con il nostro dolcissimo soffio quello che succede è che rompiamo le scatole a questo bel sistema. Ci troviamo quindi in una situazione in cui il fiammifero/candela sono ancora molto caldi, ma non abbastanza per emettere luce. Vi sono particelle non completamente combuste e grumi di composti del carbonio. Questi sono caldi (e pertanto più leggeri dell’aria, motivo per il quale il fumo tende a salire), ma non abbastanza da emettere luce. Si producono quindi corpuscoli non luminosi, ma nerastri: il fumo. Magia (della fisica chimica).

Abbiamo quindi il fumo in tutte quelle condizioni di combustione incompleta o mal riuscita (vogliamo parlare di un barbecue?) finché la “sorgente del carbonio” che sia candela, fiammifero o carbone non si raffredda fermando del tutto la combinazione con l’ossigeno dell’aria.

Il tutto per dire che una candela è bella da fissare e coadiuva la riflessione (ci certo molto più profonda di quella qui esposta) sia da accesa che mentre sta per spegnersi. Generalizzo?

WU

PS. Mi torna alla mente quest’altra divagazione da divulgatore.

C/2017 U1 (Oumuamua), il monolite viandante

Di questo strano, unico, tanto atteso, a tratti immaginato, caricato di aspettative, lontano, misterioso, leggendario prima ancora di averlo mai visto, oggetto avevamo già parlato qui.

Viene da oltre i confini del nostro sistema solare e già questo è sufficiente. Ma c’è di più. Dato l’interessante traiettoria più accurate osservazioni sono state condotte e dall’analisi dei dati è venuto fuori che:

Spectroscopic measurements show that the object’s surface is consistent with comets or organic-rich asteroid surfaces found in our own Solar System. Light-curve observations indicate that the object has an extreme oblong shape, with a 10:1 axis ratio and a mean radius of 102±4 m, assuming an albedo of 0.04. Very few objects in our Solar System have such an extreme light curve.

Ovvero siamo davanti ad una sorta di lastra di roccia e ferro, lunga quasi 400 metri, larga una quarantina es abbastanza piatta. Il mitico monolite di Kubrikiana memoria (anche se l’accostamento è fin troppo semplice da essere quasi banale).

The highly elongated shape of Oumuamua implied by its large light-curve range is very unusual. If the object is cigar-shaped and rotating around its shortest axis, it must have at least some tensil strenght.

Si tratta, quasi sicuramente di un asteroide dato che non ci sono tracce di attività cometaria (ghiaccio che sublima e crea una qualche forma di coda) all’avvicinarsi al nostro sole. Un solido masso temprato dalle profondità interstellari. E per di più di colore rossiccio a causa della più che prolungata esposizione dei suoi metalli alle radiazioni cosmiche.

Oumuamua’s red surface color is consistent with the organic-rich surfaces of comets, D-type asteroids, and outer solar system small bodies […], are consistent with uniform colors over the whole surface of the object. This suggests that ‘Oumuamua’s reflectivity is indistinguishable from small bodies in our own solar system but the inferred shape is unique.

Come se non bastasse Oumuamua gira molto rapidamente attorno al proprio asse di rotazione: ogni giro dura solo 7,3 ore, come nessun altro oggetto spaziale finora scoperto. Di nuovo.

An analysis of ‘Oumuamua’s lightcurve (Figure 3, see Methods) indicates its rotation period is ~ 7.34± 0.06 hours under the custom-ary assumption that the double-peaked lightcurve is dominated by the shape of the object. No other period gives a satisfactory re-phased lightcurve and the value is not unusual for objects of this size. […] Oumuamua are more likely to have greater mechanical strength capable of sustaining a highly elongated shape.

L’unica cosa certa è che il sigaro interstellare non ci colpirà, l’unica speranza (ovviamente tanto più vana quanto maggiore è la distanza del passaggio dalla Terra, tanto per legarla a qualcosa di misurabile) è che la lastra, come il cinematografico monolite ci porti la saggezza necessaria. Non ardisco a conquistare spazio e tempo, solo a sopravvivere senza fare troppi danni.

WU

PS. Siamo passati da un poco poetico 1I/2017 U1 ad Oumuamua:

1I/2017 U1 has been named Oumuamua, which in Hawaiian reflects the way this object is like a scout or messenger sent from the distant past to reach out to us.

LAGEOS, the time capsule

Laser Geodynamics Satellites (LAGEOS) is a couple of (artificial… of course) satellites orbiting around our Earth. Their original aim was to provide an orbiting laser ranging benchmark for Earth geodynamical studies. It was back in the 1976 when LAGEOS-1 was launched by NASA followed in 1992 by LAGEOS-2 (NASA and ASI…). Two launches without too much claim and advertising for one of the most long-lasting missions ever conceived.

Both satellites are actually two balls (looking like golf balls) made of high-density passive laser reflectors. More in detail, they are brass spheres covered with aluminium of 60 cm diameter and 400-410 kg mass. Spread over they surfaces there are 426 reflectors made of glass and germanium. Measurements can be made by transmitting from Earth ground stations pulsed lasers toward the satellites that reflect the pulses and measuring the travel times. In addition the shape, attitude-independent measurements and the orbit allows for using the satellites also for determine the geoid shape, the tectonic plate movements, and the distortion predicted by the general relativity caused by a rotating mass.

In the end the two satellites are completely passive, without any attitude control means and without any electronic on board. In order to provide a stable reference for geodynamical studies (which means an extremely high accuracy in determining the positions of points on the Earth), the golf balls have been placed in very stable medium altitude orbits at about 5900 km altitude.

As a consequence of the orbital altitude, shape and mass of the satellites, LAGEOS-1 (LAGEOS-2 has very similar features…) is doomed to reentry on Earth in … 8.400.000 years! At some point in more than 8 millions years some of our descendant (…or any other species enough intelligent to survive to us) will see a ball coming from the past.

A real time capsule.

This was luckily clear already at the time of launch. LAGEOS-1 indeed carries a plaque, made by C. Sagan (of course…) indicating the future of the humanity expected at the time of satellite launch.

LAGEOS1.png

The plaque includes the numbers 1 to 10 in binary. In the upper right is the earth with an arrow pointing to the right, indicating the future. It shows a #1 indicating 1 revolution, equaling 1 year. It then shows 268435456 (in binary; 228) years in the past, indicated by a left arrow and the arrangement of the Earth’s continents at that time. The present is indicated with a 0 and both forward and backward arrows. Then the estimated arrangement of the continents in 8.4 million years with a right facing arrow and 8388608 in binary (223). LAGEOS itself is shown at launch on the 0 year, and falling to the Earth in the 8.4 million year diagram.

I’ll never see the satellites with my own eyes (well… I guess), and I can imagine the astonishment of anyone seeing that plate in millions of years (it si much more than a fossil we can discover nowadays!) .

My hope, as per today, is that the satellites will be still checked (even form time to time) for the millenniums to come, to avoid that far from eyes the satellites will be forget while they can still be considered as alive.

WU

Il kilogrammo di Plank

Nulla è più come prima (… e come mi sento vecchio in questi asserti) dalla nonnina che cuce sull’uscio di casa al chilogrammo. Eh ???

Si, neanche il nostro punto di riferimento per vacui discorsi da palestra o da macellaio è destinato a rimanere quello di un tempo, a partire dal 2019 un kilo non sarà più un kilo (cioè si, sarà sempre lui, ma non più fisicamente lui). E, forse, meglio così … no, non per la gioia dei fautori del sistema imperiale britannico.

In origine era un cilindretto di platino-iridio (conservato a Parigi come ci insegnano a scuola) che portava sulle sue spalle la responsabilità di tarare tutte le bilance del mondo. Un ruolo decisamente poco invidiabile per il piccolo oggetto che porta comunque egregiamente avanti da circa 130 anni. Per alleviarne le sofferenze, nel 1889 furono prodotti 18 campioni destinati ad essere identici (e già l’uso di questa parola non può che far storcere il naso) al cilindretto originale per essere distribuiti nei vari paesi affinché vi fossero più riferimenti quando si parla di Kg, gr, hg e simili. Ovviamente la precisione e la misura della massa si riflette direttamente su tutte le grandezze che da essa dipendono (e non sono poche), e.g. densità, candela, ampere, mole, etc.

Periodicamente tali “copie” fanno un viaggio a Parigi per essere confrontate con l’originale (o meglio, anche qui, con copie di lavoro dell’originale). Ovviamente il paragone non è come quando andiamo dal fruttivendolo. I campioni sono conservati sotto teche stagne, vanno lavati con acqua bi-distillata e speciali solventi, non vanno sfregati per non rimuovere materiale ed astuzie del genere. Inoltre una volta ogni 40 anni, il cilindro dei cilindri, il chilogrammo originale, viene rimosso dalla sua teca per fare un’ulteriore paragone con i 18 esemplari e con le sue copie di lavoro.

KgCampione.png

Beh, il punto è che nonostante tutte queste copie ed accortezze, il chilogrammo padre ha perso circa 50 microgrammi rispetto a tutti gli altri. O meglio, la differenza è di 50 microgrammi, ma che sia lui ad aver perso peso o gli altri ad averlo preso non ci è dato saperlo. Il meccanismo che ha causato tale variazione di peso non è affatto chiaro, mentre è chiaro che questo macchinoso sistema è intrinsecamente impreciso. Ah, la precisione richiesta per queste misure? Venti parti su un miliardo…

Il problema è superabile modificando il riferimento del chilogrammo da un campione fisico ad una grandezza fisica universalmente misurabile, come ad esempio la forza elettromagnetica, esprimibile a sua volta in funzione della costante di Plank (finalmente una grandezza universale!). La bilancia di Kimble è praticamente una bilancia a due bracci; su uno dei due viene posizionato un peso , mentre l’altro è lasciato vuoto ed il peso è controbilanciato da una corrente elettrica che scorre in un un filo immerso in un campo magnetico. La misura della corrente (che è poi la precisione nella misurazione della costante di Plank, ovvero di decine di parti su miliardo) è precisa quanto basta per vedere che forza serve per bilanciare il chilogrammo campione. Anche qui, ovviamente, più facile a dirsi che a farsi, dato che la bilancia deve essere isolata da qualunque perturbazione esterna, la precisione nella misurazione della corrente deve essere molto elevata, così come la ripetibilità della stessa.

Praticamente spostiamo il problema da accortezze manuali per il trattamento di un campione fisico ad accortezze tecnologiche nella misurazione di grandezze fisiche.

Un primo passo avanti.

WU

PS. Il peso è comunque l’ultimo superstite di un sistema di misurazione basato su oggetti fisici. Le altre due grandezze fisiche di riferimento, il metro ed il secondo, sono state già sostituite da costanti della natura: il metro è la distanza percorsa dalla luce nel vuoto in un intervallo di tempo pari a 1/299.792.458 di secondo; il secondo è la durata di 9.192.631.770 periodi della radiazione corrispondente alla transizione tra due livelli iperfini dell’atomo di cesio-133.

Il che è l’ennesima prova che della massa (e della gravità ad essa associata), benché ce l’abbiamo davanti da millenni, non abbiamo ancora capito tutto.

C/2017 U1, il viandante

Non sono certo che rientriamo nella categoria (si, tendo inutilmente a categorizzare) “I want to believe”.

Il nostro sistema solare è (stra)pieno di comete, è questo è un dato di fatto. Abbiamo una specie di nuvoletta (il cui diminutivo è assolutamente fuori luogo trattandosi di una regione fra 20.000 e 100.000 UA) che avvolge tutto il sistema solare, la Nube di Oort, che genera gran parte delle comete “di lungo periodo”, ovvero quelle che si ripetono ogni centinaia di migliaia (almeno) anni. Abbiamo anche un’ulteriore regione bella densa di oggetti pronti a diventare comete, la fascia di Kuiper, più interna, che genera invece comete di “corto periodo”, dove per corto intendiamo un periodo inferiore a 200 anni (non è certo colpa delle comete se noi umani abbiamo un’orizzonte di vita così limitato!).

Ad ogni modo, esistono poche (pochissime, anzi praticamente nessuna se si escludono le “vittime” delle perturbazioni gravitazionali degli altri pianeti, Giove in primis) comete che hanno invece un’orbita assolutamente strana. Sono così eccentriche che invece di descrivere un’ellisse attorno al nostro Sole (orbite chiuse, come Keplero insegna) sembrano descrivere una parabola o addirittura un’iperbole. Queste sono orbite che non si chiudono attorno al nostro Sole e pertanto lasciano aperta l’immaginazione sull’origine e sul destino di queste comete.

La cometa che ha suscitato questo genere ci considerazioni, la prima con un’orbita potenzialmente aperta non a causa di qualche calcetto gravitazionale, è la (…nome assolutamente friendly) C/2017 U1; osservata nell’Ottobre di quest’anno dal Panoramic Survey Telescope and Rapid Response System (Pan-Starrs). La sua orbita, ad oggi, non ha speranza di rientrare nel nostro sistema solare, ma costruendo la sua orbita a ritroso ci pone la domanda “ma quindi, da dove è partita?”.

Parliamo comunque di un puntino poco luminoso (un “sasso” di 150 metri di diametro) che si muove a circa 26 km/h e più di 30.000.000 di km da noi… Il condizionale è d’obbligo, almeno finché ulteriori osservazioni non saranno completate, dato che l’orbita potrebbe essere comunque chiusa (ellittica), ma estremamente allungata tanto da darci l’impressione di essere aperta (scenario che fra l’altro non garantisce un prospero futuro alla cometa, dato che la porterebbe a passare estremamente vicina al nostro Sole che, da buona stella, ne farebbe un sol boccone).

Further observations of this object are very much desired. Unless there are serious problems with much of the astrometry listed below, strongly hyperbolic orbits are the only viable solutions. Although it is probably not too sensible to compute meaningful original and future barycentric orbits, given the very short arc of observations, the orbit below has e ~ 1.2 for both values. If further observations confirm the unusual nature of this orbit, this object may be the first clear case of an interstellar comet.

In questo momento il candidato più probabile (e per noi forse lo scenario più interessante) è quello in cui la suddetta cometa sia un messaggero proveniente da un’altro sistema solare dalle parti della costellazione della Lira, dove a circa 25 anni luce vediamo brillare ogni notte la stella Vega.

Direzione stimata ad oggi: costellazione di Pegaso. Qualcuno liggiù potrebbe scambiarla per il nostro emissario…

WU